NAVAL POSTGRADUATE SCHOOL
Monterey, California

- THESIS

FILE TRANSFER WITH SNR
HIGH-SPEED TRANSPORT PROTOCOL

by
Veliddin Eran Sezgin
December 1995

Thesis Advisor: Gilbert Lundy

Approved for public release; distribution is unlimited.

19960408 107

REPORT DOCUMENTATION PAGE Own N 07040158

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Ardington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

e e —————— .
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1995 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

File Transfer With SNR High-Speed Transport Protocol

6. AUTHOR(S)

Sezgin, Veliddin Eran

———————————r

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

Y~ T Y T Ty Ty
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES . .))) .
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

. ——— T T .y ——y——— ~——
12a. DISTRIBUTION / AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
To validate SNR as a high speed transport protocol, efficient means of transferring large data files

are required. The problem is that no file transfer program is currently implemented for SNR. The SNR
protocol was described in IEEE Transactions on Communications 91 Vol. 38 #11.

The approach taken was to modify the Trivial File Transfer Protocol (TFTP) and use it with the
SNR Receiver and Transmitter implementations in both the FDDI and Ethernet LANs. The program was
developed on top of the IP layer in the UNIX operating system using the C programming language. The
UNIX system features that were adopted for this implementation were multitasking, shared memory, raw
sockets and process control. This required overcoming the problems as signal loss, shared memory size,
conflicts among the raw sockets and network interface configuration in an IP host.

The results were a fully functioning TFTP code for a modified SNR Transmitter and Receiver code
and a new scheme in transferring files with SNR. An artifact of this thesis was that both client and server
were single CPU running eleven processes each for file transfers. Due to this constraint, a large amount
of latency in file transfer times, compared to Internet Protocol FTP, was observed.

14, SUBJECT TERMS) i 15. NUMBER OF PAGES
File Transfer Protocol, SNR, Implementation, High Speed Network, Raw 46
Socket, Maximum Transmission Unit, [76. PAICE COBE.
17. SECURITY CLASSIFICATION]16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

FILE TRANSFER WITH SNR HIGH-SPEED TRANSPORT PROTOCOL

Veliddin Eran Sezgin
LTIG, Turkish Navy
B.S., Naval Academy, Turkey, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1995

’
—
5=

Author:

c Veliddin Eran S%
Approved by: /g ,/Z/ % Z

Gilbert Lundy, Thesis Advis

Lou Stevens, Second Reader

S Rotote
f—’.‘"-eéicwis, Chairman,
epartment of Computer Science

1ii

v

ABSTRACT

To validate SNR as a high speed transport protocol, efficient means of transferring large
data files are required. The problem is that no file transfer program is currently implemented for
SNR. The SNR protocol was described in IEEE Transactions on Communications 91 Vol. 38 #11.

The approach taken was to modify the Trivial File Transfer Protocol (TFTP) and use it with
the SNR Receiver and Transmitter implementations in both the FDDI and Ethernet LANs. The
program was developed on top of the IP layer in the UNIX operating system using the C
programming language. The UNIX system features that were adopted for this implementation were
multitasking, shared memory, raw sockets and process control. This required overcoming the
problems as signal loss, shared memory size, conflicts among the raw sockets and network
interface configuration in an IP host.

The results were a fully functioning TFTP code for a modified SNR Transmitter and
Receiver code and a new scheme in transferring files with SNR. An artifact of this thesis was that
both client and server were single CPU running eleven processes each for file transfers. Due to this
constraint, a large amount of latency in file transfer times, compared to Internet Protocol FTP, was

observed.

TABLE OF CONTENTS

I INTRODUCTIONcooiiiiiiiiniiniiniiicniieieneeniesestestssesessessssessessessssesessssesssassssssessans 1
A. MOTIVATION AND BACKGROUND FOR THIS WORKccccoevevueu.. 4
B. TRIVIAL FILE TRANSFER PROTOCOL (TFTP) ...c.cooveeeeerererererreriveennns 4
C. IMPLEMENTATION ENVIRONMENTccocoviiminnieerrnrereeeenerese e 5
D. ORGANIZATION OF THIS THESISc.ccooeiiieeeeteeteeereeere e 6
II. RAW SOCKET APPLICATION PROGRAM INTERFACE (API)cceuu... 7
A, INTRODUCTION ...cooiiiiiriiieirieicnenenteretnsenenretnssssssesssesesssssssesesesssssesessssons 7
B, GENERAL ...ttt stesevsssestessesessesassssesassesassesessenses 7
C. PROTOCOL CONTROL BLOCKS (PCBs) e s 9
D. DELIVERY OF A RECEIVED PACKET IN RAW IP SOCKETS 9
E. RAWIPPACKET SIZEooiiiiiiiiciniinerenieecrenesssaensesesessssssesassesesnens 11
IO, FTP IMPLEMENTATION WITH SNRcccoceoiriiintnininieninieseeresseceeeneseeressenees 13
A. TERMINOLOGY AND CONCEPTS IN CLIENT SERVER 13
B. OVERVIEW OF THE TFTPccoovciniiteviniieiinteieeererecens st seessresreneons 14
C. DATAFORMATS IN TFTPcooiirininreinienteiereereeveceesese e ressesessens 15
D. RELATION TO IMPLEMENTATION OF SNR FTP PROTOCOL 16
E. MAXIMUM TRANSMISSION UNIT (MTU) ...coceverevrerireieerererereeeeeenene 20
F SHARED MEMORY SIZEcccccouevuvimmmmemnriannnerensssesesesssesesssesssssssnssones 23
G. ORGANIZATION OF THE PROCES SES IN SNR FTP ..., 23
H. AN EXAMPLE ...ttt svesas e s es s s en s snanns 26
IV. LIMITATIONS OF SNR/IP APPLICATIONScooooiitieieeineeeeeeeeeeeeee e 29
A. IMPLEMENTATION LIMITATIONSccoovmmmrereeeeceeeereeeeee e 29

vi

B. THEORETICAL SNR PERFORMANCEccccocvivvmninininienrinrennenenns 29

V. EVALUATION ...ttt srss e es st ernesssnsasens 33
A, GENERALocovitiiicittictttsnscninesssesissssessesi s ssssssssensosessssessossons 33
B. FUTURE IMPROVEMENTSccooniininiiiniinininncnieensssisscssesesessassenns 33
LIST OF REFERENCEScccoiiiiiiiieiiietcieniieiesriessesesscsssassesessssesssassessssesnsness 35
INITIAL DISTRIBUTION LISToovoiiiiiiiciiniiiniiientctniecesnessesesiessesssssesssessesees 37

vii

I. INTRODUCTION

The SNR protocol is a network transport protocol which was designed to efficiently
use the high transmission rate and low error rate provided by optical fiber links. It was first
introduced in (Netravali, et al.,1991), then in (Lundy, Tipici, 1994) a formal specification
was given using the System of Communicating Machines (SCM) model. More details
about the protocol can be found in (Lundy, Tipici, 1994).

The key idea in the design of the SNR protocol is to provide a high processing speed
by simplification of the protocol, reduction of the processing overhead and utilization of
parallel processing. In order to achieve these goals, the following design principles are
observed:

« periodic exchange of complete state information and eliminating explicit timers,
« selective repeat method of retransmission,

« the concept of packet blocking, and

+ parallel processing.

The SNR transport protocol is intended to connect two host computers end-to-end
across a high speed network as shown in Figure 1.

The protocol requires a full duplex link between two host systems. Each host
system in the network consists of eight finite state machines (FSM), four for executing the

transmitter functions, and four for executing the receiver functions.

Host A

FTP | Telnet l Email Applications
TCP SNR Transport Layer
Internet Protocol Network Layer
LAN
LAN
LAN
Network Layer Internet Protocol
Transport Layer TCP SNR
Applica[ions FTP I Telnet ‘ Email
Host B

Figure 1. Network Hosts, Entities and SNR Protocol Process

We have used two UNIX workstations in our FTP implementation. They are
connected to each other with both FDDI and Ethernet. Two workstations, namely WHITE
and GOLD, run System V, version IV of UNIX operating system.

The general organization of the machines in two hosts running SNR is shown in
Figure 2. Each machine in the protocol perform a specific function in coordination with
other machines. The coordination is established by communicating through shared

variables.

Host GOLD

Host interface

Host WHITE

Send control pkt.

Send control pkt.

T2

R1

Receive data pkt.

T1 5

Connect

Process control pkt.

T3

Send control pkt.

R4

Send control pkt.

R1

R2

Connect
Process control pkt

R3

Send control pkt.

T4

Host Interface

Send control pkt.

R2

T1

Send new blocks
Retransmit old blocks

Send control pkt.

R3

Send control pkt.

T2

Connect
Process control pkt.

T3

Send control pkt.

Figure 2. Machine Organizations in SNR Layer in Two Hosts. After

Lundy, Tipici, 1994.

.........................

A. MOTIVATION AND BACKGROUND FOR THIS WORK

File transfer is an important part of any network. In this thesis we develop a client
and server implementation of the Internet Trivial File Transfer Protocol (TFTP) (Sollins,
1981) by using SNR transport protocol designed for high speed networks. This file transfer
protocol is specified by Request for Comments (RFC) 783. Although its specification calls
for it to be implemented using UDP, a cooperating client and server pair can be
implemented using almost any desired transport protocol.

We have used the SNR receiver (Wan, 1995) implemented by W. J. Wan, LTJG
Taiwanese Navy and SNR transmitter (Mezhoud, 1995) implemented by Farah Mezhoud,

Major Tunisian Army, as the underlying transport protocol.

B. TRIVIAL FILE TRANSFER PROTOCOL (TFTP)

Trivial File Transfer Protocol (TFTP) is a very simple protocol used to transfer files
between two systems. It was designed to be small and easy to implement. It is much smaller
than the Internet File Transfer Protocol (FTP) and does not provide many of the features
that FTP provides (directory listings, user authentication, etc.). The only service provided
by TFTP is the ability to send and receive files between a client process and a server
process. It is implemented on top of the Internet User Datagram protocol (UDP or
Datagram) to transfer files between machines on different networks.

Although FTP is the most general file transfer protocol in the TCP/IP suite, it is also
the most complex and difficult to program (Comer, 1991, Vol. 1). Many applications do
not need the full functionality FTP offers, nor can they afford the complexity. The only
thing TFTP can do is read and write files (or mail) from or to a remote server. It can not list
directories and currently has no provisions for user authentication. In common with other

Internet protocols, it is character oriented and uses packets of up to 65535 bytes.

Three modes of transfer are currently supported in TFTP: netasciil; octet, eight bit
bytes; mail, netascii characters sent to a user rather than a file. Additional modes can be
defined by pairs of cooperating hosts. Each nonterminal packet is acknowledged

separately.

C. IMPLEMENTATION ENVIRONMENT

The experimental LAN environment used in SNR FTP is depicted in Figure 3. Each
computer has two network interfaces, Ethernet and FDDI with separate IP addresses, as
they are shown in Figure 3. The SNR Receiver (Wan, 1995) and Transmitter (Mezhoud,
1995) implementations are done on the same LAN. The machine Gold and White has
SunOS Release 5.3, whereas, the machine Black has IRIX Release 4.0.5.F as the operating

system. Both operating systems are different versions of UNIX.

FDDI Ring

/ /

\/

131.120.10.1 131.120.10.2 131.120.10.3
GOLD WHITE BLACK
131.120.1.17 131.120.1.129 131.120.1.79
Ethernet

Figure 3. Experimental LAN

1. This is ASCII as defined in “USA Standard Code for Information Interchange (USASI, 1968)”
with the modifications specified in “Telnet Protocol Specification (RFC 764, 1980)”. It is eight bit
ASCII and the term “netascii” will be used throughout the thesis to mean this particular version of
ASCII.

D. ORGANIZATION OF THIS THESIS

This thesis is organized in the following manner: Chapter I is an introduction and
briefly outlines the SNR transport protocol and the work done prior to this thesis. The
chapters are organized to relay background information to the reader about the practical
constraints imposed by multiprocessing with one-CPU hosts on SNR FTP implementation.

Chapter II gives information about raw socket application program interface, which
is used in the UNIX environment to develop and experiment with the protocols running on
Internet Protocol. Based on the discussion in this chapter, we have improved the SNR
Receiver (Wan, 1995) and Transmitter (Mezhoud, 1995) implementations.

Chapter III gives an insight into the client-server paradigm and the practical
limitations we have experienced. We show how much we have adopted the generally
accepted client-server rules in our implementation. We conclude the chapter with an
example explaining what happens just before the actual file transport starts between two
hosts, regarding the Address Resolution Protocol (ARP). ‘

Chapter IV gives information about theoretical SNR performance, and a
comparison is made with the theoretical performance of TCP transport protocol, based on
the discussion in (Stevens, 1994).

Chapter V is about the evaluation of the implementation with the recommended
future improvements that can be done in this implementation.

Because of its capacity, the source code is not included in this thesis. The line
counts of source code for the transmitter, receiver, server, and client are 5000, 4450, 3000,
and 4800 respectively. The SNR Receiver (Wan, 1995) source code is not modified
however, the Transmitter (Mezhoud, 1995) source code is modified significantly. The SNR
FTP server and client source codes are based on the publicly available TFTP source code
in 4.3 BSD UNIX. For a detailed discussion about the TFTP source code, refer to (Stevens,
1990).

II. RAW SOCKET APPLICATION PROGRAM INTERFACE (API)

A. INTRODUCTION

This chapter provides a brief discussion of the significant aspects of the raw socket
in UNIX System V, taken from (Stevens, 1995, Vol. 2). The IP, TCP and UDP software is
a part of today’s UNIX operating systems. Any transport protocol other than TCP or UDP
can be implemented outside the operating system by using raw socket API. Once the
protocol has stabilized, it can be made part of the operating system to improve the
performance. Since it is used in the SNR Receiver (Wan, 1995) and Transmitter (Mezhoud,
1995) implementations, the manner in which it handles the IP packets affects the

performance of SNR FTP implementation.

B. GENERAL

The raw socket requires superuser privilege to create. The superuser is allowed
unrestricted access to files and additional permissions over other processes. This is to
prevent random users from writing their own IP datagrams to the network. Raw socket
provides three capabilities for an IP host:

+ They are used to send and receive ICMP and IGMP messages.
+ They allow a process to build its own IP headers.
+ They allow additional IP-based protocols to be supported in a user process.

The socket API fills in a few fields in the IP header, but it also allows a process to
supply its own IP header. This allows diagnostic programs to create any type of IP
datagram. The socket API input provides three types of filtering for incoming IP datagrams.
The process chooses to receive datagrams based on:

+ The protocol number field (set by socket system call),
+» The source IP address (set by connect system call), and

+ The destination IP address (set by bind system call).

The process chooses which combination of these three filters to apply. Figure 4
shows the related fields of a received IP packet that is filled in by sender by using socket,
bind and connect system calls.

These three tests imply that a process can create a raw socket with a protocol of 0
and not bind a local address, not connect to a foreign address, and the process receives all
datagrams processed by the operating system.

In raw socket, an IP header can be filled in by the operating system or provided by
the application. An application can provide an IP header by enabling the socket, using the
system call setsockopt with the argument IP. HDRINCL. The Type of Service (TOS) and the .
Time to Live (TTL) fields of raw socket IP packet is set to 0 and 255, respectively, when the
operating system fills in the header.

One drawback in using raw IP sockets for an application is that the application
process can not be traced with a debugger in user space, since they require super user

privilege to run.

0 15 16 31
Version Eg:gg Type of Service Total Length of the Packet
Unique ID Number of the Packet Flag Fragment Offset

Header Checksum

Time to Live

Figure 4. IP Datagram Header

C. PROTOCOL CONTROL BLOCKS (PCBs)

In the UNIX, when a process executes the system call socket, the process table
structure is accessed by the operating system. One of the fields in that structure keeps track
of the file descriptors that is used by this process via a chain of structures connected to each
other with pointers. The descriptor that is returned by the socket system call is basically a
derivative of conventional file descriptor. The part we are concerned with is the doubly
linked list of Protocol Control Block structures pointed by the socket structure.

PCB structure fields that concern us are depicted in Figure 5. The foreign address
and local address fields of a PCB is filled in by connect and bind system calls respectively.
The protocol no field is provided by the third argument of socket system call when creating

a socket. For a detailed discussion, refer to (Stevens, 1994, Vol. 2).

next P next
previous f.--------- - previous
foreign addr. foreign addr.
local address local address
protocol no protocol no Socket Descriptor

doubly linked list of all raw IP Internet Protocol Control Blocks

Figure 5. Protocol Control Blocks of a Socket Descriptor. After
Stevens, 1994, Vol. 2.

D. DELIVERY OF A RECEIVED PACKET IN RAW IP SOCKETS

Incoming raw IP packets are handled by the kernel according to the following steps:

1. Save Source IP Address

The source address from the received IP datagram is put into a global variable in

the system level, which is used in finding a matching PCB. Unlike UDP or TCP, there is

no concept of a port number with raw IP, so the sin_port field in the sockaddr_in structure

is always 0.

2. Search All IP PCBs for One or More Matching Entries
The raw socket API handles its list of PCBs differently from UDP and TCP. UDP

and TCP protocols maintain a pointer to the PCB for the most recently received datagram
(a one-behind cache). They then call the generic function in_pcblookup to search for a
single best match, when the received datagram does not equal the cache entry.The raw
socket API has totally different criteria for a matching PCB, so it searches the PCB list -
itself. A raw IP datagram can be delivered to multiple sockets, so every PCB on the PCB
list must be scanned. This is similar to UDP's handling of a received datagram destined for

a broadcast or multicast address.

3. Compare Protocols
If the protocol field in the PCB is nonzero, and if it doesn't match the protocol field
in the IP header, the PCB is ignored. This implies that a raw socket with a protocol value

of 0 (the third argument to socket system call) can match any received raw IP datagram.

4. Compare Local and Foreign IP Addresses

If the local address in the PCB is nonzero, and if it doesn't match the destination IP
address in the IP header, the PCB is ignored. If the foreign address in the PCB is nonzero,

and if it doesn't match the source IP address in the IP header, the PCB is ignored.

5. Pass Copy of Received Datagram to Processes

Operating system passes a copy of the received datagram to the process. If more
than one process receives a copy of the datagram, operating system makes the copies and -
passes to the processes. However, if only one process receives the datagram, there is no

need to make a copy.

10

6. Undeliverable Datagram

If no matching sockets are found for the datagram from the PCB list, some system
level counters are incremented or decremented. For a detailed discussion, refer to (Stevens,
1994, Vol. 2).

Handling of the incoming raw IP packets led us to have two separate raw IP sockets
in our implementation; one for receiver and one for transmitter on each host. This prevented
client’s transmitter (receiver) from processing server’s transmitter (receiver) control
packets and vice versa. The modification saved a considerable amount of time in file

transfer.

E. RAWIP PACKET SIZE

The maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit total
length of the packet field in the IP header (Figure 4). With an IP header of 20 bytes and a
SNR header of eight bytes, this leaves a maximum of 65507 bytes of user data in a SNR/IP
datagram. Most IP implementations, however, provide less than this maximum packet size.

There are two limits we can encounter. First, the application program may be
limited by its programming interface. The sockets application program interface (API)
provides a function, the application can call to set the size of the receive and the send buffer.
For a raw socket, this size is directly related to the maximum size IP datagram the
application can read or write. Most systems today provide a default of just over 8192 bytes
for the maximum size of a raw socket IP datagram that can be read or written. The next
limitation comes from the kernel's implementation of IP. There may be implementation

features (or bugs) that limit the size of an IP datagram to less than 65535 bytes.

11

III. FTP IMPLEMENTATION WITH SNR

A. TERMINOLOGY AND CONCEPTS IN CLIENT SERVER

The client server paradigm divides communicating applications into two broad
categories, depending on whether the application waits for communication or initiates it.
This section provides a concise, comprehensive definition of the two categories, and

explains many of the subtleties. (Comer, 1991)

1. Clients and Servers

The client-server paradigm uses the direction of initiation to categorize whether a
program is a client or server. In general, an application that initiates peer-to-peer
communication is called a client. Each time a client application executes, it contacts a
server, sends a request, and awaits a response. When a response arrives, the client continues
to process. Clients are often easier to build than servers and usually require no special
system privileges to operate. A server is any program that waits for incoming
communication requests from a client. The server receives a client's request, performs the

necessary computation, and returns the result to the client.

2. Connectionless Vs. Connection Oriented Servers

Connectionless transport implies unreliable delivery, whereas, connection oriented
transport means reliable delivery. Connectionless transport should be used, if the
application using it handles reliability, or each client accesses its server on a local area
network that exhibits extremely low loss and no packet reordering. Connection oriented
transport should be used whenever a wide area network separates the client and server.

SNR has three different data transport modes; mode 0, mode 1, and mode 2. SNR
provides all the reliability needed to communicate across an inter network with the mode
2, which has a flow control and error checking. Interaction of server and client in mode 2
is in connection oriented style, as in TCP/IP. On the other hand, mode 0, with no flow
control and error checking (i.e., retransmission), leads to a connectionless style interaction

between client and server, as in UDP/IP. Mode 1, with the flow control, is a connection

13

oriented style interaction with no error checking. Mode 0 is the fastest mode with less
overhead, whereas, mode 2 is the most reliable mode with a disadvantage of lower
performance when compared to mode 0. Data transfer in mode 0 works well in a local
environment because reliability errors seldom occur in a local environment. Errors usually
arise only when communication spans a wide area network where packets may be

duplicated, dropped or delivered out of order.

3. Stateless Vs. Stateful Servers

Information that a server maintains about the status of ongoing interactions with
clients is called state information. Servers that do not keep any state information are called
stateless servers; others are called stateful servers. Stateless server scheme is adopted in the

implementation of SNR FTP since one connection at a time can be made to the server.

B. OVERVIEW OF THE TFTP

Any transfer begins with a request to read or write a file, which also serves to
request a connection. If the server grants the request, the connection is opened and the file
is sent in fixed length blocks of 512 bytes. Each data packet contains one block of data and
must be acknowledged by an acknowledgment packet before the next packet can be sent.
A data packet of less than 512 bytes signals termination of a transfer. If a packet gets lost
in the network, the intended recipient will time-out and may retransmit his last packet
(which may be data or an acknowledgment), thus, causing the sender of the lost packet to
retransmit that lost packet. The sender has to keep just one packet on hand for
retransmission, since the lock step acknowledgment guarantees that all older packets have
been received. Both machines involved in a transfer are considered senders and receivers.
One sends data and receives acknowledgments, the other sends acknowledgments and
receives data.

Most errors cause termination of the connection and are signalled by sending an
error packet. This packet is not acknowledged and not retransmitted (i.e., a TFTP server or

user may terminate after sending an error message), so the other end of the connection may

14

not receive it. Therefore, time-outs are used to detect such a termination when the error
packet has been lost. Errors are caused by three types of events:
« Not being able to satisfy the request (e.g., file not found, access violation, or no

such user).

+» Receiving a packet which cannot be explained by a delay or duplication in the
network (e.g., an incorrectly formed packet).

+ Losing access to a necessary resource (e.g., disk full or access denied during a
transfer).
This protocol is very restrictive in order to simplify implementation. For example,
the fixed length blocks make allocation straight forward, and the lock step acknowledgment

provides flow control and eliminates the need to reorder incoming data packets.

C. DATA FORMATS IN TFTP

There are two formats of data transfer supported by TFTP: netascii and octet. The
netascii format is used for transferring text files between the client and server. The standard
ASCII character set is used and the end of each text line is designated by a carriage return
(octal 15) followed by a line feed (octal 12). If there is a carriage return in the text file, it is
transferred as a carriage return followed by a null byte (octal 0). The presence of a carriage
return followed by any other character is undefined.

By defining a standard format for the text file that is being transferred, it is possible
to transfer data between two different systems. It is the responsibility of the client and the
server to convert the local file representation to and from netascii. For example, to transfer
a text file between an IBM 370 and a VAX UNIX system, the IBM implementation of
TFTP has to convert a file from EBCDIC to ASCII and insert the carriage return, line feed
pairs at the end of every line. The VAX UNIX system has to look for the carriage return-
line feed pairs and remove the carriage return, since UNIX stores text files with only a line
feed separating the lines. The receiving UNIX system also has to look for a carriage return
followed by a null, then remove the null. The octet data format is used for transferring

binary files. There are two primary uses of TFTP to transfer binary data between systems.

15

First, two systems with the same architecture can exchange a binary file without any
problems. Second, if a system receives a binary file and then returns it to the system that
sent it originally, the format of the file must not change. This scenario can be used to
provide a file server. The clients send their files to the server in binary mode and retrieve
them later in binary mode- The server would not be trying to interpret the contents of the
binary file. It is merely storing it on its local file system. As long as it uses the same storage

technique to store and retrieve a binary file, the actual contents of the file won't change.

D. RELATION TO IMPLEMENTATION OF SNR FTP PROTOCOL

TFTP is implemented on the UDP protocol, hence, packets will have an Internet
header, a Datagram header, and a TFTP header. Additionally, the packets may have a
header (Ethernet, FDDI, etc.) to allow them through the local transport medium. As shown
in Figure 6, the order of the contents of a packet will be; local medium header, Internet
header, Datagram header, TFTP header, followed by the remainder of the TFTP packet,
which may or may not be data depending on the type of packet, as specified in the TFTP
header. TFTP does not specify any of the values in the Internet header. As mentioned,
TFTP can be implemented on top of any desired transport protocol. We replaced the UDP
header with SNR header in our implementation, as depicted in Figure 7.

The TFTP header consists of a two-byte Opcode field, which indicates the packet's
type (e.g., DATA, ERROR, etc.). These opcodes and the formats of the various types of

packets are discussed further in the section on SNR FTP packets.

Local Medium 1P UDP TFTP

Figure 6. Order of Headers in Implementation of TFTP

Local Medium IP SNR TFTP

Figure 7. Order of Headers in Implementation of SNR FTP

i6

1. Imitial Connection Protocol

A file transfer is established by sending a request (WRQ to write onto a foreign file
system, or RRQ to read from it) and receiving a positive reply, an acknowledgment packet
for write, or the first data packet for read. In general, an acknowledgment packet will
contain the block number of the data packet being acknowledged. Block numbers are
associated with each data packet and are consecutive and begin with one. Since the
positive response to a write request is an acknowledgment packet, in this special case the
block number will be zero. (Normally, since an acknowledgment packet is acknowledging
a data packet, the acknowledgment packet will contain the block number of the data packet |

being acknowledged). If the reply is an error packet, then the request has been denied.

2. SNR FTP Packets

SNR FTP supports six types of packets, one more than the five types of packets in
TFTP. We have added directory listing request packet type to our implementation as
opcode six. The SNR FTP header of a packet contains the Opcode associated with that
packet, as listed in Table 1.

RRQ and WRQ packets have the format shown in Figure 8. The file name is a
sequence of bytes in netascii terminated by a zero byte. The mode field contains the string
“netascii”, “octet”, or “mail” (or any combination of upper and lower case, such as
“NETASCII”, Netascii”, etc.). A host which receives netascii mode data must translate the
data to its own format. Octet mode is used to transfer a file that is in the eight-bit format of
the machine from which the file is being transferred. It is assumed that each type of
machine has a single eight-bit format that is more common, and that format is chosen. If a

host receives a octet file and then returns it, the returned file must be identical to the

original.

17

Opcode Operation
1 Read request (RRQ)
2 Write request (WRQ)
3 Data (DATA)
4 Acknowledgment (ACK)
5 Error (ERROR
6 Directory listing request (DRQ)

Table 1. Opcodes Used in the SNR FTP Header. After Sollins, 1981.

2 bytes string 1 byte

string

1 byte

Opcode File Name 0

Mode

Figure 8. Read Request (RRQ) / Write Request (WRQ) Packet

Data is actually transferred in DATA packets, as depicted in Figure 9. DATA
packets (Opcode = 3) have a block number and data field. The block numbers on data
packets begin with one and increase by one for each new block of data. This restriction
allows the program to use a single number to discriminate between new packets and
duplicates. The data field is from zero to 512 bytes long. If it is 512 bytes long, the block
is not the last block of data; if it is from zero to 511 bytes long, it signals the end of the

transfer.

2 bytes

2 bytes n bytes

Opcode (3)

Block No

Data

Figure 9. Data Packet

18

All packets other than those used for termination are acknowledged individually,
unless a time-out occurs. Sending a DATA packet is an acknowledgment for the ACK
packet of the previous DATA packet. The WRQ and DATA packets are acknowledged by
ACK or ERROR packets, while RRQ and ACK packets are acknowledged by DATA or
ERROR packets. Figure 10 depicts an ACK packet; the Opcode is four.

2 bytes 2 bytes
Opcode(4) Block No

Figure 10. Acknowledgment (ACK) Packet

The block number in an ACK echoes the block number of the DATA packet being
acknowledged. A WRQ is acknowledged with an ACK packet having a block number of
Zero.

An ERROR packet (opcode five) takes the form depicted in Figure 11. An ERROR
packet can be the acknowledgment of any other type of packet. The error code is an integer

indicating the nature of the error.

2 bytes 2 bytes string 1 byte
Opcode(5) | Error Code Error Msg. 0

Figure 11. Error (ERROR) Packet

A directory listing request that is added to SNR FTP, DRQ (Opcode six), takes the
form in Figure 12. The directory listing formed as data packet is the acknowledgment for a

DRQ packet sent by the client.

19

2 bytes string
Opcode(6) Mode

Figure 12. Directory Listing Request (DRQ) Packet

A table of error values and their meanings is given in Table 2. The error message is
intended for user comprehension, and should be in netascii. Like all other strings, it is

terminated with a zero byte.

Value Meaning
0 Not defined, see error message (if any)
1 File not found
2 Access violation
3 Disk full or allocation exceeded
4 Hlegal TFTP operation
5 Unknown transfer ID
6 File already exists
7 No such user

Table 2. Error Codes

E. MAXIMUM TRANSMISSION UNIT (MTU)

As we can see from Figure 13, there is a limit on the size of the Ethernet frame. This
limits the maximum number of bytes of data to 1500. This characteristic of the link layer

is called the maximum transmission unit (MTU).

20

6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes
Dest. Addr. | Src. Addr. Type Data CRC

Figure 13. Ethernet Encapsulation

If IP has a datagram to send, and the datagram is larger than the link layer's MTU,
IP performs fragmentation. This breaks the datagram into smaller pieces (fragments), so
that each fragment is smaller than the MTU. We used the ifconfig command available to
the UNIX user to examine the MTU of the interfaces on the hosts on which the experiments

were performed. Following is the screen output of ifconfig -au command on machine gold:

/n/gold/work/sezgin/% ifconfig -au

100: flags=849<UP,LOOPBACK RUNNING,MULTICAST> mtu 8232
inet 127.0.0.1 netmask f000000 '

1e0: flags=863<UP,BROADCAST NOTRAILERS RUNNING , MULTICAST> mtu 1500
inet 131.120.1.17 netmask ffffff00 broadcast 131.120.1.255
ether 8:0:20:1b:9:7b

sbf0: flags=863<UP,BROADCAST,NOTRAILERS RUNNING,MULTICAST> mtu 4352
inet 131.120.10.1 netmask ffffff00 broadcast 131.120.10.255

/n/gold/work/sezgin/%

The first network interface, namely lo0, is the loopback interface, which has a MTU
of 8232. The second network interface, which is /e0, is the Ethernet interface with a MTU
of 1500, the same size of an typical Ethernet packet. Finally, the third network interface,
sbf0, is the FDDI interface with a MTU of 4352. We have used both Ethernet and FDDI

interfaces in our experiments.

Most type of networks have an upper limit on MTU. Table 3 lists some typical
MTU values taken from (Stevens, 1994, Vol. 1).

21

Network (&Ei)
Hyperchannel (maximum IP) 65535
16 Mbits/sec token ring (IBM) 17914
4 Mbits/sec token ring (IEEE 802.5) 4464
FDDI 4500
Ethernet 1500
IEEE 802.3/802.2 1492
X.25 576

Table 3. Typical Implementation MTUs. From Stevens, 1994, Vol. 1.

When two hosts on the same network are communicating with each other, it is the
MTU of the network that is important. However, when two hosts are communicating across
multiple networks, each link can have a different MTU. The important numbers are not the
MTUs of the two networks that the two hosts connect, but rather the smallest MTU of any
data link that packets traverse between the two hosts. This is called the path MTU.

The path MTU between any two hosts need not be constant. It depends on the route
being used at any time. Also, routing need not be symmetric (the route from A to B may
not be the reverse of the route from B to A), hence, the path MTU need not be the same in
the two directions. (Mogul, et al., 1990) specifies the “path MTU discovery mechanism,”
a way to determine the path MTU at any time. We used a version of the traceroute program
(Stevens, 1994, Vol. 1) that uses the ICMP unreachable error to determine the path MTU
of our LAN.

As an experiment, this modified version of traceroute was run numerous times to
various hosts around the world (Stevens, 1994, Vol. 1). Fifteen countries (including
Antarctica) were reached, and various transatlantic and transpacific links were used. Out of

18 runs, only 2 had a path MTU of less than 1500.

22

This experiment concludes that many, but not all, wide area networks today can
handle packets larger than 512 bytes. Using the path MTU discovery feature may allow
SNR applications to take advantage of these larger MTUs.

F. SHARED MEMORY SIZE

The shared memory scheme is kept as inter-process communication in our
implementation for the reasons explained in (Mezhoud, 1995).

The SunOS 5.3 kernel modules are automatically loaded when needed. There are
paramete:rs1 for the kernel and kernel modules that can be tuned. Many parameters

automatically scale as a function of the value assigned to the maxusers* parameter in /etc/
system file.

In SNR receiver (Wan, 1995) and transmitter (Mezhoud, 1995) implementations,
the packets are implemented as 64 bytes considering the default maximum shared memory

size, which is one mega byte, available to the processes. The maximum shared memory
segment size parameters of the computers on our LAN are modified® and increased from

one mega-byte to ten mega-bytes. The increase in shared memory allowed to have FTP data

packets of 1024 bytes (not including the ftp header) based on the MTU discussion above.

G. ORGANIZATION OF THE PROCESSES IN SNR FTP

The timing dependencies and parent-child relation of the processes in the SNR FTP
client implementation is shown in Figure 14. The main process on the client side spawns
one set of transmitter and receiver process per host. The main procedure of transmitter (T4)
and receiver (snr_r) are responsible for spawning their own set of machines with the name

listed under them. The transmitter is in charge of checking if the connection is established

1. To see a complete list of the tunable kernel parameters run the nm command on the appropriate
module. For example:
% lusriccs/bininm lkernellunix
2. To see the current values assigned to the kernel parameters type sysdef -i and press Return
3. We have entered a line in the /etc/system file in the form of:
set shmsys:shminfo_shmmax 10485760

23

or not. We transferred the raw IP socket creation from receiver (transmitter) to the main

procedures of server and client.

client_ftp
_____ - 1 .

T4 , sSnr_r
send i *
: : i | snr_rl | .
: T2 : X X
: * ' snr_r2
e iG> [| |
: Yes* : ' :
] o]

.............

bad

Figure 14. Processes Executed by the “client_ftp

The timing dependencies and parent-child relation of the processes in the
implementation is shown in Figure 15. The server spawns the receiver and waits for a FTP
connection request to arrive. Once the connection request is gotten, the transmitter is
spawned. The server receiver accepts the raw socket IP packets with a protocol number of
192, which is sent by the client transmitter. The server transmitter receives only the raw
socket IP packets with a protocol number of 191, which is sent by the client receiver. So,
the corresponding transmitter-receiver pairs of client and server exchange the SNR packets
with different protocol numbers. This scheme discards the packets that should not be
passed to an unrelated process due to handling of raw socket IP packets. Otherwise, server

transmitter could get the client transmitter’s control packets, which forces them to be

24

discarded in the SNR layer and could increase the overhead of the implementation. The

protocol number fields of packets used in the implementation is shown in Figure 16.

client_ftp l
T | -— <—| snrr |
1] 1 I'Cquest] L]
E send E E snr_rl E
T2 . v | snr 12 |
: ‘ No E E
o [=e]
v Yes E . X
' * ' v | snr_r4 | .
. T1 : ! :
' ‘ v | snr_tc |
' T3 ' oo -l

Figure 15. Processes Executed by the “server_ftp”

protocol no 192

FTP transmitter | <@ -----c-s------- » | receiver FTP

CLIENT SERVER

TECEeIVEr | wg-------uooooo.. p | transmitter

protocol no 191

Figure 16. Protocol Numbers of Exchanged Raw Socket IP Packets

25

H. AN EXAMPLE

Whenever the command client ftp white is typed at machine gold the following

steps take place. These numbered steps are shown in Figure 17.

L.

The application, client fip, calls the function gethostbyname to convert the
hostname “white” into its 32-bit IP address. This function is called a resolver
in the DNS (Domain Name System). This conversion is done using the DNS,
or on smaller networks, as in our LAN, a static hosts file “/etc/hosts”.

The FTP client forks its SNR Transmitter to establish a connection with the
SNR Receiver at that IP address.

The client’s SNR Transmitter sends a connection request packet to the
remote host by sending a raw IP datagram to its IP address.

If the destination host is on a locally attached network (e.g., Ethernet, FDDI),
the raw IP datagram can be sent directly to that host. If the destination host is
on a remote network, the IP routing function determines the Internet address
of alocally attached next hop router in order to send the IP datagram. In either
case, the raw IP datagram is sent to a host or router on a locally attached
network. In our LAN, IP datagram is sent directly to machine white.

Since we use the Ethernet driver, the machine gold must convert the 32-bit IP
address into a 48-bit Ethernet address. A translation is required from the
logical Internet address to its corresponding physical hardware address. This
is the function of Address Resolution Protocol (ARP).

With the assumption that there is no entry in our /etc/hosts file for the
machine name white, ARP sends an Ethernet frame called an ARP request to
every host on the network. This is called a broadcast. We show the broadcast
in Figure 16 with dashed lines. The ARP request contains the IP address of
the destination host (whose name is white) and is the request “if you are the
owner of the IP address, please respond to me with your hardware address.”

The destination host’s ARP layer receives this broadcast, recognizes that the
sender is asking for its IP address, and replies with an ARP reply. This reply
contains the IP address and the corresponding hardware (Ethernet) address.

The ARP reply is received and the IP datagram that forced the ARP request-
reply to be exchanged can now be sent.

The IP datagram is sent to the destination host.

26

The fundamental concept behind ARP is that the network interface has a hardware
address (a 48-bit value for an Ethernet interface). Frames exchanged at the hardware level
must be addressed to the correct interface. SNR/IP applications work with its own
addresses: 32-bit IP addresses. Knowing a host’s IP address doesn’t let the operating
system send a frame to that host. The operating system (i.e., Ethernet driver, FDDI driver)
must know the destination’s hardware address to send it data. The function of ARP is to
provide a dynamic mapping between 32-bit IP addresses and the hardware addresses used
by various network technologies. This requires keeping a periodically updated local “/etc/

hosts” file entries for a better performance of SNR/IP applications.

27

hostname

!

hosthame
resolver) FTP
IP address
) establish connection
SNR FTP Client with IP address
Computer GOLD N -
SNR : Transmitter Receiver :
| . N, s |
send raw IP datagram 3)
to IP address
raw IP
s Arp | @
: A
®., | ® (O
Ethernet Driver
ARF Request (Ethernet broadcast) % R O E >

SNR FTP Server
Computer WHITE
P M Arp
raw | IP
v
r—— - - - — =7 /= = - A
SNR : Transmitter Receiver :
L

=~

FTP

Figure 17. Operation of the command “client_ftp white”. After
Stevens, 1994, Vol. 1

28

IV. LIMITATIONS OF SNR/IP APPLICATIONS

A. IMPLEMENTATION LIMITATIONS

The performance of SNR/IP applications are limited by the decisions made during
implementation of the SNR Receiver (Wan, 1995) and Transmitter (Mezhoud, 1995). The
block number and the packet number fields are implemented as unsigned character, which
is one byte. These two fields affect the performance of any SNR/IP application using mode
one or two, where data is transferred in blocks of data packets. Hence, the largest file that
can be transferred in one connection is:

= (max. block number) x (max. packet number) x (max. packet data length)

=255 * 255 * (max. packet data length)

The maximum packet data length is closely related to the maximum shared memory
size that can be allocated for the SNR Transmitter and Receiver in a host. Using packet size
of 1024 bytes consumes around eight mega-byte shared memory in the host.

Since mode zero transfer (no error checking, reordering and duplicate detection of
packets) is used in SNR FTP, the performance is affected significantly by running eleven
processes in single CPU host. The output from a simple “Is” command (directory listing
request from server) takes around one second in the experimental LAN, regardless of which
FDDI or Ethernet driver is used to reach the server. The only reason for this large amount

of latency is the context switching done by the hosts in scheduling eleven processes.

B. THEORETICAL SNR PERFORMANCE

Since Ethernet is the most common LAN topology today, we calculate the
theoretical throughput in an Ethernet with basic assumptions. We have used the same
methodology as in (Stevens, 1994, Vol. 1). We show the basics for this calculation in Table
4. This table shows the total number of bytes exchanged for a full-sized data packet, and a
receiver (or transmitter) control packet is used to acknowledge it. Even though file transfer
is done using SNR transfer mode-zero (data is passed to the application layer with no

buffering, reordering or error checking), we use the transfer mode-two packet

29

specifications in our calculations. This will enable us to evaluate the throughput with the most

overhead.

Ethernet Packet Field Data ACK
Preamble 8 8
Destination address 6 6
Source address 6 6
Type 2 2
IP header 20 20
SNR header 6 6
User data 1474 0
Pad (to Ethernet minimum) 0 20
CRC 4 4
Inter-packet gap (9.6 micro-sec) 12 12
Total 1538 84

Table 4. Field Sizes for SNR Packet on Ethernet. After Stevens, 1995, Vol. 1.

We must account for all the overhead; the preamble, the PAD bytes that are added to
the acknowledgment, the CRC, and the minimum inter-packet gap (9.6 microseconds, which
equals 12 bytes at 10 Mbits/sec). We first assume the transmitter in SNR client transmits two
back-to-back full-sized data blocks, and then the receiver in SNR server sends a receiver

control packet acknowledging these two blocks. The maximum throughput (user data) is then,

(2 x 255 % 1474) bytes % 10, 000, 000 bits/sec
((2x255x1538) + 84) bytes 8 bits/byte

throughput = = 1,197,856 byteé/sec

30

If the SNR window is opened to its maximum size, which is the maximum number
of blocks that can be transferred in one connection, this allows a window of 255 1480-byte

segments. If the receiver acknowledges every 128th block, the calculation becomes:

(128 x 255 x 1474) bytes 10, 000, 000 bits/sec

throughput = ((128 x 255 x 1538) + 84) bytes X 8 bits/byte

= 1, 197, 982 bytes/sec

This is the theoretical limit and makes certain assumptions: a receiver state control
packet sent by the receiver doesn't collide on the Ethernet with one of the sender's packets; -
the sender can transmit two blocks with the minimum Ethernet spacing; and the receiver
can generate the receiver state control packet within the minimum Ethernet spacing.

As seen in the results of both throughput calculations, SNR takes advantage of
transferring data in blocks. Throughput stays practically the same. On the other hand with
the same assumptions, TCP has a theoretical performance of 1,155,063 bytes/sec, where
sender transmits two back-to-back data packets and receiver sends an acknowledgment for
these two packets. If the TCP window is opened to its maximum size (65535), throughput
increases to 1,183,667 bytes/sec, less than the maximum throughput of SNR.

Moving to faster networks, such as FDDI (100 Mbits/sec), (Stevens, 1995, Vol. 1)
indicates that three commercial vendors have demonstrated TCP over FDDI between 80
and 98 Mbits/sec.

The following practical limits apply for any real-world scenario (Borman, 1991).

» The speed of the slowest link determines the running speed of protocol.

+ The memory bandwidth of the slowest machine determines the speed of
implementation. This assumes the implementation makes a single pass over the
data. If not (i.e., the implementation makes one pass over the data to copy it from
user space into the kernel, then another pass over the data to calculate the SNR
checksum), implementation run even slower. (Dalton, et al., 1993) describe
performance improvements to the standard Berkeley sources that reduce the
number of data copies to one. (Partridge, et al., 1993) applied the same “copy-

and-checksum” change to UDP, along with other performance improvements,
and improved UDP performance by about 30%.

31

» The window size offered by the receiver, divided by the round-trip time is
another limiting factor for the implementation speed. (This is the bandwidth-
delay product equation, using the window size as the bandwidth-delay product,
and solving for the bandwidth).

The bottom line in all these numbers is that the real upper limit on how fast SNR

can run is determined by the size of the SNR window and the speed of light. As concluded

by (Partridge, et al., 1993), many protocol performance problems are implementation

deficiencies rather than inherent protocol limits.

32

V. EVALUATION

A. GENERAL

This implementation complies with the TFTP specifications. Some differences
exist due to the independent execution of the SNR Receiver and Transmitter processes
along with the TFTP process. Extra efforts in almost every way were put on program source
code documentation and for the possible improvement of this implementation in the future.
The TFTP client and server controls the execution of their Transmitter and Receiver
machines, as they are shown in Figure 14 and 15 in Chapter III.

File transfers are performed in both LANSs, depicted in Figure 3 in Chapter I, in
order to compare the performance of FDDI and Ethernet network drivers with a packet size
of 1024 bytes. Since the client and the server each have 11 processes running in one-CPU
host, a sound comparison could not be done. The overhead of context switching done
among these processes and the handling of IP packets by raw sockets, as it is explained in
Chapter II, resulted in approximately the same amount of time in file transfers regardless
of the network interface used. The other overhead is caused by the number of signals
available to any user application in the UNIX operating system. Since two user defined
signals in the UNIX, namely SIGUSRI and SIGUSR?2, are used for sending signals among
the processes of the Transmitter and the Receiver implementations, the client and the server
processes do busy-waiting to check if any FTP packets has arrived, rather than blocking

until a signal arrives. This also wastes system resources.

B. FUTURE IMPROVEMENTS

In this implementation, file transfers are performed in data transfer mode-zero of
SNR protocol and each FTP data packet is acknowledged separately in a stop-and-go
fashion. In order to take advantage of the high speed and reliability of fiber optic networks,
a file can be treated as a block and the packet size can be calculated in accordance with the
file size. Once a packet size is agreed upon dynamically during connection establishment,
data transfer can be performed in block mode with much less acknowledgments compared

to stop-and-go interaction.

33

The latency observed in transferring files can be reduced significantly by
transporting the implementation to more than one CPU hosts. This would bring the SNR
transport protocol to the same level with the TCP so that its performance can be compared.

The path MTU discovery feature, explained in Chapter III, can be incorporated into
the SNR connection establishment phase, and the result can be used in deciding on the SNR
packet size dynamically. This would enable the SNR take advantage of MTUs larger than
the conventional limit of 576 bytes.

In order to get a good comparable performance against TCP transport protocol, the
SNR Receiver and Transmitter implementations should be transported into the operating

system. This improvement will prevent the overhead due to processing of raw socket TP

packets.

34

LIST OF REFERENCES

Comer, D. E., Stevens, D. L., Internetworking With TCP/IP, Volume III, Prentice Hall,
1991.

Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A., Lumley, J., Afterburner,
IEEE Network, Vol. 7, No. 4, July 1993.

Lundy, G. M., Tipici, H., Specification and Analysis of the SNR High Speed Transport
Protocol, IEEE/ACM Transactions on Networking, Vol. 2, No. 5, October 1994.

Mezhoud, F., An Implementation of the SNR Protocol (Transmitter Part), Master’s Thesis,
Naval Post Graduate School, Monterey, CA, March 1995.

Mogul J. C., Deering, S. E., Path MTU Discovery, RFC 1191, April 1990.

Netravali, A. N., Roome, W. D., Sabnani, K., Design and Implementation of A High-Speed
Transport Protocol, IEEE Transactions on Communications, Vol. 38, No. 11, November
1991.

Partridge, C., Mendez, T., Milliken, W., A Faster UDP, IEEE/ACM Transactions on
Networking, Vol. 1, No. 4, August 1993.

Sollins, K. R., Trivial File Transfer Protocol (TFTP) - Revision 2, RFC 783, June 1981.
Stevens, W. R., UNIX Network Programming, Prentice Hall, 1990.
Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994,

Stevens, W. R., Wright, G. R., TCP/IP Illustrated, Volume 2: The Implementation,
Addison-Wesley, 1995.

Wan, W. J., An Implementation of the SNR Protocol (Receiver Part), Master’s
Thesis, Naval Post Graduate School, Monterey, CA, March 1995.

35

36

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

8725 John J. Kingman Rd. STE 0944

Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Prof. Gilbert Lundy, Code CS/LN
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Prof. Lou Stevens, Code CS/ST
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

'V. Eran Sezgin
Emlak Bankasi Konutlari
B-5Blok 8 Giris Daire 7
Gaziemir, Izmir TURKEY

37

